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Abstract

Two numerical schemes are developed for solutions of the bidimensional Maxwell–Bloch equations in nonlinear optical
crystals. The Maxwell–Bloch model was recently extended [C. Besse, B. Bidégaray, A. Bourgeade, P. Degond, O. Saut, A
Maxwell–Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP,
M2AN Math. Model. Numer. Anal. 38 (2) (2004) 321–344] to treat anisotropic materials like nonlinear crystals. This
semi-classical model seems to be adequate to describe the wave–matter interaction of ultrashort pulses in nonlinear crystals
[A. Bourgeade, O. Saut, Comparison between the Maxwell–Bloch and two nonlinear maxwell models for ultrashort pulses
propagation in nonlinear crystals, submitted (2004)] as it is closer to the physics than most macroscopic models. A
bidimensional finite-difference-time-domain scheme, adapted from Yee [IEEE Trans. Antennas Propag. AP-14 (1966)
302–307], was already developed in [O. Saut, Bidimensional study of the Maxwell–Bloch model in a nonlinear crystal, sub-
mitted (2004)]. This scheme yields very expensive computations. In this paper, we present two numerical schemes much
more efficient with their relative advantages and drawbacks.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Today, laser sources make it possible to produce shorter and shorter, yet powerful, light pulses. Pulses of a
few dozens of attoseconds are now obtainable. For such time-length, the classical mathematical models from
nonlinear optics are no longer relevant. Because the optical pulses are extremely short, they are beyond the
limitations of the slowly varying envelope approximation that is used in the derivation of the nonlinear
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Schrödinger equation [5,6]. Mathematical models with a dispersive linearity are well known [7]. Adding a qua-
dratic dispersive nonlinearity is a complex task [8,2]. As shown in [1], the Maxwell–Bloch renders any order of
the nonlinearity with its dispersive relation.

Furthermore, for practical applications, we would like to study the wave–matter interaction in anisotropic
media. We are particularly interested in nonlinear optical crystals with a discrete group of symmetries. Among
this large class of crystals, the KDP crystal is of very common use for harmonic generation. This crystal will be
used in our experiments.

In [1], we have derived a semi-classical model based on the Maxwell–Bloch equations, adapted to describe
the wave–matter interaction in nonlinear crystals. The propagation of an electromagnetic wave is classically
described by the full-vector time-dependent Maxwell equations. The modeling of the matter is performed
with the Bloch equations, which are derived in the context of quantum mechanics. To obtain the model,
we had to find relations between the linear and quadratic optical susceptibilities of the crystal and its quan-
tum structure, which cannot be recovered from experimental data. With these relations and careful use of
the group of symmetries of the crystal, we were able to postulate the most simple quantum structure ade-
quate to describe the light–matter interaction. The model has three distinct energy levels, one of which is
threefold degenerate.

Then, in [9], we write a discretization scheme when the wave-field depends only on one space variable in the
direction of propagation of the laser beam. The electromagnetic field is discretized using the classical Yee
scheme [3] with temporal and spatial staggered grids. To obtain a second-order scheme, the points of discret-
ization of the polarization and the density matrix must be chosen carefully. The time-derivative of the polar-
ization is computed with the Bloch equations and is replaced in the Maxwell equations by its expression as a
function of the density matrix and the electric field. Thus, in order to compute the electric field, at each time
step, we have to solve a bloc-diagonal linear system. The Bloch equations are solved using a splitting scheme:
the Hamiltonian is divided into the free Hamiltonian and the Hamiltonian resulting from the interaction of the
wave-field with the matter.

With this scheme, we compare our model with two macroscopic models based on nonlinear Maxwell
equations [2]. In the first one, the polarization is instantaneous, while it takes the linear and quadratic dis-
persions into account in the second one. We show that the Maxwell–Bloch model renders more physical
effects than these macroscopic models. Indeed, with this model, we can see the saturation of the nonlinearity
or Raman scattering. . .Furthermore, the nonlinear polarization is not restricted to its quadratic part as it is
in the macroscopic models. Every order of the nonlinearity is computed and takes the dispersion into
account.

However, several physical phenomena are still not observable with a one-dimensional model. The diffrac-
tion or self-focusing effects can only be seen with a bidimensional study. A first scheme for solutions of the
two-dimensional Maxwell–Bloch equations was described in [4]. This scheme is a naive extension of the uni-
dimensional FDTD scheme [9]. It discretizes the wave-field described by the pair (E,H) with a Yee scheme
adapted to take the polarization and the density matrix into account. Unfortunately, this scheme yields a large
linear system which is to be solved at each time step. It significantly increases its computational cost. Thus, this
scheme can only be used for short distances of propagation.

After writing [4], we saw a clear need to develop more efficient schemes for the Maxwell–Bloch equations in
order to study numerically realistic physical phenomena. In this article, we present two schemes, which should
address this problem. The first scheme uses a pseudospectral method. The time derivatives are still obtained by
finite differences, but the spatial derivatives are obtained by mean of a Fourier transform. This scheme is much
simpler than the previous one as the use of staggered grids in space for the electric and magnetic fields are no
longer mandatory to ensure a second-order scheme. Because of the wraparound effect of the discrete Fourier
transform, absorbing layers have to be added to the computational domain.

The last scheme presented is a FDTD scheme, which should address the main drawback of our first scheme.
The three components of the nonlinear polarization are now computed at the same points in space. Moreover,
we now describe the wave-field by the pair (D,H), where D is the electric induction. The nonlinear polarization
term is not explicitly involved in the Maxwell equations.

The outline of this paper is as follows. In Section 2, we present the physical setup and the Maxwell–Bloch
model.
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In Section 3, we describe the three numerical schemes, their advantages and drawbacks. The first and third
ones are FDTD schemes adapted from the Yee scheme [3]. The second one is a pseudospectral scheme adapted
from [10].

In Section 4, we perform several numerical experiments to underline some numerical considerations and to
study the validity of our model [1].

2. Physical context

Let us quickly describe the Maxwell–Bloch model (for a complete derivation of this model, one can see
[11,12]). In this model, the wave-field is described by the pair (D,H), D being the electric induction and H

the magnetic field, or (E,H), E being the electric field. Its evolution is driven by the Maxwell equations.
We assume that the medium does not have any free charge.

In the (E,H) formulation, the Maxwell equations are written as
l0otH ¼ �r� E;

eotE ¼ r�H� otP;

r � ðeEþ PÞ ¼ 0;

r �H ¼ 0.

8>>><
>>>:

ð1Þ
We shall denote by g the matrix e�1, the inverse of the static tensor of susceptibility e.

Remark 1. Let us recall that without any loss of generality in a uniaxial crystal, as shown in [9], we can choose
the axis y in order to make four coefficients of the matrices e and g vanish (namely gxy = gyx = gyz = gzy = 0).
In the sequel of this paper, we assume that this choice has been made as it simplifies the discretization.

We know that D = eE + P. Thus, in the (D,H) formulation, the previous system yields
l0otH ¼ �r� E;

otD ¼ r�H;

r �D ¼ 0;

r �H ¼ 0.

8>>><
>>>:

ð2Þ
The two relations $ Æ D = 0 and $ Æ H = 0 do not play any role in the sequel.
In the Maxwell–Bloch model, the material is statistically described at the quantum-mechanical level with

the density matrix formulation [11]. Each molecule of the crystal is considered as a quantum system with N

discrete levels of energy. The density matrix q represents in its diagonal terms the various populations in each
of the energy levels of the free Hamiltonian. The off-diagonal terms of the density matrix represent the quan-
tum coherences of a set of atomic states.

This density matrix evolves through the Bloch equations
otqjk ¼ �ıxjkqjk þ
ı

�h
½l � E; q�jk; 1 6 j; k 6 N ; ð3Þ
where xjk = xj � xk, l is the dipolar matrix characterizing the material at the quantum-mechanical level and
E is the electric field of the incoming laser pulse. We recall that, for two operators A and B, [A,B] ” AB � BA.

The physical meaning of this model is the following. Each molecule of the crystal is seen as a single atom
with one electron independent from the other molecules of the crystal. This atom reacts to the wave-field as a
quantum dipole. Albeit this oversimplification of the physics involved, this model can be quite accurate to
describe the wave–matter interaction.

In this paper, we consider electromagnetic fields depending on two variables in space. One variable z in the
direction of propagation of the laser pulse and the other y in a transverse direction. To ease the writing of the
boundary conditions, we assume that all interfaces are normal (in fact this is also the experimental setup in
order to minimize reflexion and to avoid damaging the optical devices). Fig. 1 presents this setup, the nonlin-
ear optical crystal is surrounded by a linear isotropic material. The linear index of the medium is chosen to
minimize the reflexion of the beam at the interfaces with the crystal.
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3. Numerical schemes

Let us first introduce a notation. The physical quantities (E,D,H,P,q) depend on three variables: the time t
and the space variables y (in the transverse direction) and z (in the direction of propagation). The experimental
setup is shown in Fig. 1.

For a function u defined on the grid, we write unj;k (or ujnj;k) for the value of u at the grid point (tn,yj,zk),
where tn = ndt, yj = jdy, zk = kdz, dt being the time step, dy the space step in the direction y and dz the step
in the direction z.

We will denote by Dt; Dy ; Dz, the central differencing operators in the directions t, y, z.
For instance, using this notation,
ðDyExÞ
nþ1

2

jþ1
2;k

¼
Exj

nþ1
2

jþ1;k � Exj
nþ1

2
j;k

dy
.

3.1. A first FDTD scheme

This scheme was deeply described in [4]. For reader�s convenience, we shall recall it shortly.
The idea behind [4] was to use the same method as in [9]. That is to say that we use an adapted Yee scheme,

where the density matrix is computed at the same points as the electric field Ex in space and at the same points
as the magnetic field H in time. This is summarized in Fig. 2.

3.1.1. Discretization of the Maxwell equations

Using the scheme, we are able to discretize Eq. (1).
For the equations leading the evolution of the magnetic field, we obtain
l0ðDtHxÞnjþ1
2;kþ

1
2
¼ �ðDyEzÞnjþ1

2;kþ
1
2
þ ðDzEyÞnjþ1

2;kþ
1
2
;

l0ðDtHyÞnj;kþ1
2
¼ �ðDzExÞnj;kþ1

2
;

l0ðDtHzÞnjþ1
2;k

¼ ðDyExÞnjþ1
2;k
.

ð4Þ
Fig. 2. A grid cell of the FDTD scheme [4] for the electromagnetic wave (E,H) and the density matrix q.
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Using the same scheme, we obtain the equations on the electric field E:
ðDtExÞ
nþ1

2
j;k ¼ gxx ðDyHzÞ

nþ1
2

j;k � ðDzHyÞ
nþ1

2
j;k

h i
� gxzðDyHxÞ

nþ1
2

j;k � gxxðotP xÞj
nþ1

2
j;k � gxzðotP zÞj

nþ1
2

j;k ;

ðDtEyÞ
nþ1

2

jþ1
2;k

¼ gyyðDzHxÞ
nþ1

2

jþ1
2;k

� gyyðotP yÞj
nþ1

2

jþ1
2;k
;

ðDtEzÞ
nþ1

2

j;kþ1
2

¼ �gzzðDyHxÞ
nþ1

2

j;kþ1
2

þ gzx ðoyHzÞj
nþ1

2

j;kþ1
2

� ðozHyÞj
nþ1

2

j;kþ1
2

h i
� gzxðotP xÞj

nþ1
2

j;kþ1
2

� gzzðotP zÞj
nþ1

2

j;kþ1
2

; ð5Þ
where the two terms ðoyHzÞj
nþ1

2

j;kþ1
2

and ðozHyÞj
nþ1

2

j;kþ1
2

in the latter equation can easily be computed with
ðoyHzÞj
nþ1

2

j;kþ1
2

¼
ðDyHzÞ

nþ1
2

j;kþ1 þ ðDyHzÞ
nþ1

2
j;k

2
; ð6Þ
and,
ðozHyÞj
nþ1

2

j;kþ1
2

¼
Hy j

nþ1
2

j;kþ3
2

� Hy j
nþ1

2

j;k�1
2

2dz
. ð7Þ
The polarization term is still to be determined. For this purpose, we use the continuous expression of otP
obtained by deriving the Bloch equations
otP d ¼ N trðlqÞ ¼ N trðldRðqÞÞ �
ıN

�h
trðld ½V ; q�Þ; d 2 fx; y; zg; ð8Þ
where V = �Exlx � Eyly � Ezlz. For convenience, we have used the notation
RðqÞj;k ¼ �ıðxj � xkÞqj;k.
Then we replace otP by expression (8) in the Ampere equations.
For instance, for the first equation of (5), we have to compute the following two terms:
ðotP xÞj
nþ1

2
j;k ¼ N tr lxRðq

nþ1
2

j;k Þ
� �

� ıN

�h
tr lx V

nþ1
2

j;k ; q
nþ1

2
j;k

h i� �
ð9Þ
and
ðotP zÞj
nþ1

2
j;k ¼ N tr lzRðq

nþ1
2

j;k Þ
� �

� ıN

�h
tr lz V

nþ1
2

j;k ; q
nþ1

2
j;k

h i� �
. ð10Þ
With the scheme of Fig. 2 in mind, we now write
V
nþ1

2
j;k ¼ �Exj

nþ1
2

j;k lx � Ey j
nþ1

2
j;k ly � lzEzj

nþ1
2

j;k ly ; ð11Þ
where we take
Exj
nþ1

2
j;k �

Exjnþ1
j;k þ Exjnj;k

2
;

Ey j
nþ1

2
j;k �

Ey jnþ1
jþ1

2;k
þ Ey jnþ1

j�1
2;k

þ Ey jnjþ1
2;k

þ Ey jnj�1
2;k

4
;

Ezj
nþ1

2
j;k �

Ezjnþ1
j;kþ1

2
þ Ezjnþ1

j;k�1
2
þ Ezjnj;kþ1

2
þ Ezjnj;k�1

2

4
.

Solving the Ampere equations yields a linear system on the electric field E, which could be written as
AEnþ1 ¼ F ðEn;Hnþ1
2; qnþ1

2Þ; ð12Þ

where Aj,k is a (Ny · Nz)

2 matrix and F a linear function with values in RNy�Nz . We have denoted by Ny and Nz

the grid sizes in directions y and z, respectively.
This system is not diagonal neither trigonal. It has to be solved using an iterative solver such as GMRES.

Because of the resolution of this very large linear system (typical values are Ny � 100, Nz � 100‘
k , where ‘ is the

crystalline depth and k the wavelength of the pulse), the computational cost of this scheme is very high and
restricts its use to very short distances of propagation. Furthermore, the development of a parallel algorithm is
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complex as the iterative solver has to share the computation between the processors. In [13], this was achieved
using [14].

It shall be noted that the complexity of this scheme comes from the fact that the three coordinates of the
electric field E are not discretized at the same space points. Then the computation of the polarization term otP
involves taking several averages in space of E to keep a second-order scheme. These space averages yield an
implicit scheme of order two in space and time.

3.1.2. Discretization of the Bloch equations

Let us recall the method used to discretize the Bloch equations as it was described in [9]. The Bloch equa-
tions give
otqjk ¼ �ıxjkqjk �
ı

�h
½V ; q�jk; 1 6 j; k 6 N ;
where V = �Exlx � Eyly � Ezlz.
This equation is divided into two parts. The first one
otqjk ¼ �ıxjkqjk; 1 6 j; k 6 N ; ð13Þ
can easily be rewritten as a diagonal system. The solving operator of this equation is denoted by SH0
.

The second one
otqjk ¼ � ı

�h
½V ; q�jk; 1 6 j; k 6 N ; ð14Þ
is solved thanks to the exact solution of this equation
qðtÞ ¼ exp � ı

�h

Z t

0

V ðsÞ ds
� �

qð0Þ exp ı

�h

Z t

0

V ðsÞ ds
� �

. ð15Þ
The integral is computed by the formula
Z t

0

V ðsÞ ds � tV
t
2

� �
. ð16Þ
The exponential of a matrix M is obtained with
expM � I � 1

2
M

� ��1

I þ 1

2
M

� �
. ð17Þ
We use this approximation to ensure that the discretized density matrix qnþ1
2 keeps the same algebraic prop-

erties as the continuous one (see [15,16]): q should be Hermitian, with a unity trace. With some other discret-
izations (as [17]), some diagonal terms of the density matrix could take negative values and the trace could be
greater than 1.

The solving operator of Eq. (14) will be denoted by SV.
Using a Strang splitting method, we have a second-order scheme for the Bloch equations. The density

matrix is computed by
q
nþ1

2
j;k ¼ S

1
2
H0

SVS
1
2
H0

q
n�1

2
j;k . ð18Þ
Let us note that, at each step, the potential V has to be computed as
V n
j;k ¼ �Exjnj;klx �

Ey jnjþ1
2;k

þ Ey jnj�1
2;k

2
ly �

Ezjnj;kþ1
2
þ Ezjnj;k�1

2

2
lz. ð19Þ
3.2. Pseudospectral scheme

This scheme was very briefly announced in [18]. The main goal of this scheme is to lighten the computa-
tional burden of the resolution of the bidimensional Maxwell–Bloch equations with the scheme described
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in Section 3.1. We adapt an idea from [10]. The complexity of [4] comes from the fact that, to keep a second-
order scheme, we have to use staggered grids for the three components of the electric field. This leads to a very
large linear system to solve at each time step in order to obtain the electric field.

Hence, we have tried to avoid the use of spatial staggered grids. As in [10], we shall use Fourier transforms
to compute the spatial derivatives of the electric field E and magnetic field H with a spectral order of accuracy.
For a function f of the space variable x 2 R3, its derivative in the direction d is given by
odf ðxÞ ¼ ½ �Fð�ındFðf ÞÞ�ðxÞ; ð20Þ

where nd is the spectral variable in the direction d. The discrete Fourier transform is achieved by using the fast-
Fourier-transform (FFT) algorithm. We denote by o

F
d the discrete derivative in the direction d.

The temporal grid is still staggered because central differencing is used for time stepping.
The Bloch equations are solved using the method described in Section 3.1.2. The only difference is that the

electric field is discretized in the same points in space as the density matrix so there is no need for the approx-
imation (19).

3.2.1. Discretization of the Maxwell equations

To compute the polarization term otP involved in the Ampere equations, we use the same method as in
Section 3.1 with the Bloch equations. However, the density matrix and the components of the electric field
are now approximated on the same grid points in space (see Fig. 3).

For the equations leading the evolution of the magnetic field, we obtain
l0ðDtHxÞnj;k ¼ �ðoFy EzÞnj;k þ ðoFz EyÞnj;k;
l0ðDtHyÞnj;k ¼ �ðoFz ExÞnj;k;
l0ðDtH zÞnj;k ¼ ðoFy ExÞnj;k.

ð21Þ
Using the same scheme, we obtain the equations on the electric field E:� �

ðDtExÞ

nþ1
2

j;k ¼ gxx oFy Hz

� �nþ1
2

j;k
�
�
oFz Hy

�nþ1
2

j;k
� gxz oFy Hx

� �nþ1
2

j;k
�gxx otP xð Þjnþ

1
2

j;k � gxz otP zð Þjnþ
1
2

j;k ;

ðDtEyÞ
nþ1

2
j;k ¼ gyy oFz Hx

� �nþ1
2

j;k
�gyyðotP yÞj

nþ1
2

j;k ;

ðDtEzÞ
nþ1

2
j;k ¼ �gzz oFy Hx

� �nþ1
2

j;k
þgzx oFy Hz

� �
jnþ

1
2

j;k � o
F
z Hy

� �
jnþ

1
2

j;k

h i
� gzxðotP xÞj

nþ1
2

j;k � gzzðotP zÞj
nþ1

2
j;k .

ð22Þ
The polarization terms are computed with Eq. (8):
ðotP dÞj
nþ1

2
j;k ¼ N trðldRðq

nþ1
2

j;k ÞÞ �
ıN

�h
tr ld V

nþ1
2

j;k ; q
nþ1

2
j;k

h i� �
; d 2 fx; y; zg; ð23Þ
so q
nþ1

2
j;k and V

nþ1
2

j;k are to be approximated to determine these terms.
We have a second-order approximation for V

nþ1
2

j;k with
V
nþ1

2
j;k ¼ �

Exjnþ1
j;k þ Exjnj;k

2
lx �

Ey jnþ1
j;k þ Ey jnj;k

2
ly �

Ezjnþ1
j;k þ Ezjnj;k

2
lz. ð24Þ
The density matrix qnþ1
2 is obtained thanks to the Bloch equations. We replace V by its value (24) in Eq. (23),

then ðotP dÞj
nþ1

2
j;k from Eq. (23) is injected into Eq. (22).
Fig. 3. Pseudospectral scheme for the electromagnetic wave (E,H) and the density matrix q.
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Let us write the corresponding equation for Ey jnþ1
j;k . From the second equation of (22) and Eqs. (23) and

(24), we have
Ey jnþ1
j;k � Ey jnj;k

dt
¼ gyy

�
o
F
z Hx

�nþ1
2

j;k
� gyyN tr lyR q

nþ1
2

j;k

� �� �
� gyy

ıN

�h

Exjnþ1
j;k þ Exjnj;k

2
tr ly lx;q

nþ1
2

j;k

h i� �

� gyy
ıN

�h

Ezjnþ1
j;k þ Ezjnj;k

2
tr ly lz; q

nþ1
2

j;k

h i� �
. ð25Þ
The component Ey jnþ1
j;k is computed at each time step with
Ey jnþ1
j;k ¼ � gyy

ıdtN
2�h

tr ly lx; q
nþ1

2
j;k

h i� �
Exjnþ1

j;k þ tr ly lz; q
nþ1

2
j;k

h i� �
Ezjnþ1

j;k

� �
� gyy

ıdtN
2�h

tr ly lx; q
nþ1

2
j;k

h i� �
Exjnj;k

�
þtr ly lz; q

nþ1
2

j;k

h i� �
Ezjnj;k

�
þ Ey jnj;k þ dtgyy

�
oFz Hx

�nþ1
2

j;k
� dtgyyN tr lyR q

nþ1
2

j;k

� �� �
. ð26Þ
Remark 2. We have used several relations to get Eq. (26). We know that tr(A[A,B]) = 0 "A, B�
then tr

�
ly
h
ly ; q

nþ1
2

j;k

i�
¼ 0

�
. As the matrices l and q are Hermitian, we also have tr

�
ld1

h
ld2 ; q

nþ1
2

j;k

i�
2 ıR

and tr
�
ldR

�
q
nþ1

2
j;k

��
2 R.

The first line of (26) contains the quantities to compute at time tn+1, the two remaining lines involve quan-
tities computed at the previous iteration (for t 6 tnþ1

2
). In order to simplify the equations, we introduce the fol-

lowing notations:
Td1d2ðqÞ ¼
ıN

�h
trðld1 ½ld2 ; q�Þ; d1; d2 2 fx; y; zg.
Eq. (26) may be rewritten as
Ey jnþ1
j;k ¼� gyy

dt
2

Tyx qnþ1
2

� �
Exjnþ1

j;k þ Tyz q
nþ1

2
j;k

� �
Ezjnþ1

j;k

� �
� gyy

dt
2

Tyx q
nþ1

2
j;k

� �
Exjnj;k þ Tyz q

nþ1
2

j;k

� �
Ezjnj;k

� �
þ Ey jnj;k þ dtgyy o

F
z Hx

� �nþ1
2

j;k
� dtgyyN tr lyR q

nþ1
2

j;k

� �� �
. ð27Þ
The two remaining components are obtained using the same method:
Exjnþ1
j;k ¼ �gxx

dt
2

Txy q
nþ1

2
j;k

� �
Ey jnþ1

j;k þ Txz q
nþ1

2
j;k

� �
Ezjnþ1

j;k

� �
� gxz

dt
2

Tzx q
nþ1

2
j;k

� �
Exjnþ1

j;k þ Tzy q
nþ1

2
j;k

� �
Ey jnþ1

j;k

� �
� gxx

dt
2

Txy q
nþ1

2
j;k

� �
Ey jnj;k þ Txz q

nþ1
2

j;k

� �
Ezjnj;k

� �
� gxz

dt
2

Tzx q
nþ1

2
j;k

� �
Exjnj;k þ Tzy q

nþ1
2

j;k

� �
Ey jnj;k

� �
þ Exjnj;k þ dtgxx oFy Hz

� �nþ1
2

j;k
� oFz Hy

� �nþ1
2

j;k

� �
� dt gxz oFy Hx

� �nþ1
2

j;k
� gxxN tr lxR q

nþ1
2

j;k

� �� ��

� gxzN tr lzR q
nþ1

2
j;k

� �� ��

and
Ezjnþ1
j;k ¼� gzx

dt
2

Txy q
nþ1

2
j;k

� �
Ey jnþ1

j;k þ Txz q
nþ1

2
j;k

� �
Ezjnþ1

j;k

� �
� gzz

dt
2

Tzx q
nþ1

2
j;k

� �
Exjnþ1

j;k þ Tzy q
nþ1

2
j;k

� �
Ey jnþ1

j;k

� �
� gzx

dt
2

Txy q
nþ1

2
j;k

� �
Ey jnj;k þ Txz q

nþ1
2

j;k

� �
Ezjnj;k

� �
� gzz

dt
2

Tzx q
nþ1

2
j;k

� �
Exjnj;k þ Tzy q

nþ1
2

j;k

� �
Ey jnj;k

� �
þ Ezjnj;k þ dtgzx oFy Hz

� �nþ1
2

j;k
� oFz Hy

� �nþ1
2

j;k

� �
� dt gzz oFy Hx

� �nþ1
2

j;k
� gzxNtr lxR q

nþ1
2

j;k

� �� ��

� gzzNtr lzR q
nþ1

2
j;k

� �� ��
.
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Collecting the above equations, we may rewrite Eq. (22) as a single linear system
Aj;kE
nþ1
j;k ¼ F j;kðEn

j;k; q
nþ1

2
j;k ; oFy H

nþ1
2

j;k ; oFz H
nþ1

2
j;k Þ 8ðj; kÞ; ð28Þ
where Aj,k is a 3 · 3 matrix and Fj,k a linear function.
Thus, the resolution of the Ampere equations on the whole domain, yields a bloc-diagonal linear system

(blocs are the 3 · 3 sub-matrices given by Eq. (28) for each point (j,k) of the domain). This system is easily
solvable by a direct method.

3.2.2. Boundary conditions
The consequence of using a discrete Fourier transform (FFT) for the spatial derivatives is to periodize the

domain in both directions. The domain could be considered as a tore. The pulses, which, physically, should
leave the domain, now reenters the computational domain and may interfere with the pulses still in propaga-
tion. This is called the wraparound effect.

To counter the wraparound effect due to the FFT, we use perfectly matched layers (PML) boundary
conditions [19]. We shall now describe the use of these conditions in our particular case.

In the absorbing layers, the electric field E and magnetic field H in the x-direction are decomposed as
Ex ¼ Exy þ Exz; ð29Þ
Hx ¼ Hxy þ Hxz. ð30Þ
Then the electric field is driven in the PML cells by
otExy þ ryExy ¼ �l0c
2oyHz;

otExz þ rzExz ¼ l0c
2ozHy ;

otEy þ rzEy ¼ l0c
2ozHx;

otEz þ ryEz ¼ �l0c
2oyHx
and the magnetic field by
otHxz þ r�
zHxz ¼ l�1

0 ozEy ;

otHxz þ r�
yHxz ¼ �l�1

0 oyEz;

otHy þ r�
zHy ¼ �l�1

0 ozEx;

otH zy þ r�
yHzy ¼ l�1

0 oyEx.
These equations are discretized using an exponential time step as shown in [7].
When ry ¼ rz ¼ r�

y ¼ r�
z ¼ 0, we get the Maxwell equations in a linear medium. In the absorbing layers, we

use a quadratic or cubic profile with 10 PML cells. In Fig. 4, we have represented the areas where the PML
coefficients r and r* are not vanishing. For instance, we took at the entry of the domain
rzðkÞ ¼ rmz 1� k
nz

� �3

;

Fig. 4. Non-vanishing PML coefficients in the absorbing layers around the physical domain.
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where k is the z-coordinate of the point considered, nz the number of PML cells in this direction and
rmz ¼ 114:9 c

nzdz
. We obtain rz at the exit by periodicity. For the PML cells in direction y, we use the same

formula after replacing dz by dy, nz by ny.
In contrast with the previous scheme, the incoming wave-field cannot be introduced within the boundary

conditions. So the incoming pulse should be put in the domain as initial datum. The linear medium before the
crystal has to be large enough to contain entirely this datum (this prevents the study of sinusoidal waves for
instance).

3.2.3. Parallelization

In the Bloch equations (3), the space variables y and z act as parameters. These equations do not involve any
spatial derivatives. They can be solved at each point in space independently from each other. The sharing of the
resolution between several processing units is straightforward. The computational domain is divided as de-
scribed in Fig. 5. In fact, as shown in [13], a quasi linear speed-up with the number of CPU could be observed.

The development of parallel algorithms for the Yee scheme is also well known (see [7]). In our case, the
computation of the polarization term should also be shared between the CPU. With the first scheme of Section
3.1, this yields a severe decrease of the efficiency of the parallel method [13].

With the pseudospectral scheme, the polarization term is computed on the same points in space as the
wave-field and the density matrix. Their computations are purely local to a given CPU. The only process
requiring exchanges between the processing units is the computation of the spatial derivatives in the y-direc-
tion. With a parallel algorithm for the FFT, this scales well with the number of CPU.

3.2.4. Conclusion

In this scheme, we have used central differencing and central averaging in time. The spatial derivatives are
computed on the whole domain with a FFT algorithm.

Proposition 3. The PSTD scheme is of second order in time and space.

From [10], we could get the stability criterion for the linear scheme (i.e., without the polarization term)
cdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dz2
þ 1

dy2

s
<

2

p
; ð31Þ
where c is the speed of light in the medium, dy and dz the two space steps.
Furthermore, in contrast with FDTD schemes, this scheme do not introduce numerical dispersion through

the approximation of the spatial derivatives. This is quite interesting when studying the propagation of ultra-
short pulses in media with dispersive nonlinearities.

3.3. Second FDTD scheme using a centered nonlinearity

The main drawback of Scheme 3.1 can also be alleviated without using a spectral method. In this section, we
shall present a new FDTD scheme. We will describe the wave field with the pair (D,H) instead of the pair (E,H).
CPU 1

CPU 2

CPU 3

CPU 4 

z

y

Fig. 5. Load sharing between four processors.
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3.3.1. Discretization of the Maxwell equations

In the bidimensional case, in the (D,H) formulation, the Maxwell equations become
Fig.
otDx ¼ oyHz � ozHy ;

otDy ¼ ozHx;

otDz ¼ �oyHx;

l0otHx ¼ �oyEz þ ozEy ;

l0otHy ¼ �ozEx;

l0otHz ¼ oyEx.

8>>>>>>>><
>>>>>>>>:

ð32Þ
The Maxwell equations on (D,H) do not involve explicitly the polarization P. However, the polarization is still
necessary to compute D from E or E from D.

With the scheme of Fig. 6, we obtain the following set of equations:
l0ðDtHxÞnjþ1
2;kþ

1
2
¼ �ðDyEzÞnjþ1

2;kþ
1
2
þ ðDzEyÞnjþ1

2;kþ
1
2
;

l0ðDtHyÞnj;kþ1
2
¼ �ðDzExÞnj;kþ1

2
;

l0ðDtH zÞnjþ1
2;k

¼ ðDyExÞnjþ1
2;k
;

ð33Þ
which allows us to evaluate the magnetic field at each time step provided the electric field is known.
Using the same scheme, we obtain the equations on the electric induction D:
ðDtDxÞ
nþ1

2
j;k ¼ ðDyHzÞ

nþ1
2

j;k � ðDzHyÞ
nþ1

2
j;k

h i
� ðDyHxÞ

nþ1
2

j;k ;

ðDtDyÞ
nþ1

2

jþ1
2;k

¼ ðDzHxÞ
nþ1

2

jþ1
2;k
;

ðDtDzÞ
nþ1

2

j;kþ1
2

¼ �ðDyHxÞ
nþ1

2

j;kþ1
2

;

ð34Þ
where we compute ðoyHzÞj
nþ1

2

j;kþ1
2

and ðozHyÞj
nþ1

2

j;kþ1
2

with Eqs. (6) and (7).

First, let us treat the semi-discretization in time of the Maxwell–Bloch equations. Let us assume that all the
physical values are computed for time t 6 tn = ndt. We use the Faraday equations (33) to compute Hnþ1

2 on the
whole domain. Thanks to the Bloch equations (3), we get the density matrix qnþ1

2. With the Ampere equations
(34), we obtain Dn+1.

To proceed, we need to estimate the electric field En+1 to solve the Faraday equations (33) at time tnþ3
2
. Four

steps will be necessary to obtain its value. The electric field is given by the equation
Enþ1 ¼ gðDnþ1 � Pnþ1Þ; ð35Þ

so we have to approximate the polarization P at time tn+1.

The polarization Pn+1 could be computed from
Pnþ1 ¼ N trðldq
nþ1Þ
or from the equation
z

y

t = n t

t = ( n + d

r

d

1
2
– ) t

Dx

Dy

Dz

Hz

Hy

Hx , , P

6. FDTD scheme with centered nonlinearity for the electromagnetic wave (D,H), the polarization P and the density matrix q.
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ðDtP dÞnþ
1
2 ¼ N tr lqnþ1

2

� �
� ıN

�h
tr ld V nþ1

2; qnþ1
2

h i� �
; d 2 fx; y; zg.
As the density matrix is evaluated at times tnþ1
2
, the first equation would yield an implicit scheme, which we

wish to avoid. We use the latter equation to compute the polarization term, so V nþ1
2 is to be estimated. If we

use the centered approximation V nþ1
2 ¼ V nþ1þV n

2
, we would encounter the same problem as with the first FDTD

scheme of Section 3.1.
Thus, we use two more steps to obtain the potential V nþ1

2. In a first step, we compute
Pnþ1
2 ¼ N trðlqnþ1

2Þ;

then the electric field Enþ1

2 is obtained through
Enþ1
2 ¼ g

Dnþ1 þDn

2
� Pnþ1

2

� �
. ð36Þ
It is then straightforward to compute the potential V nþ1
2 and the polarization Pn+1. Finally, we have En+1 from

Eq. (35).
The algorithm is summarized in Fig. 7.
For describing the full discretization of the equations, we introduce a notation: for a function u on the grid,

we define the central averaging operator A by
ðAyuÞj;. ¼
ujþ1

2;. þ uj�1
2;.

2
;

using the same idea, we define Az, At.
The electric field E is discretized as D for time tn and as P for time tnþ1

2
.

To compute Enþ1
2 from Dn, Dn+1 and Pnþ1

2, we use
E
nþ1

2

jþ1
2;kþ

1
2

¼ g �

ðAy;z;tDxÞ
nþ1

2

jþ1
2;kþ

1
2

� Pxj
nþ1

2

jþ1
2;kþ

1
2

ðAz;tDyÞ
nþ1

2

jþ1
2;kþ

1
2

� Py j
nþ1

2

jþ1
2;kþ

1
2

ðAy;tDzÞ
nþ1

2

jþ1
2;kþ

1
2

� P zj
nþ1

2

jþ1
2;kþ

1
2

0
BBBB@

1
CCCCA. ð37Þ
Fig. 7. Algorithm of the FDTD scheme with centered nonlinearity.
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Finally, the electric field En+1 is obtained from Dn+1 and Pn+1 through the equations:
Exjnþ1
j;k ¼ gxx Dxjnþ1

j;k � ðAy;zP xÞnþ1
j;k

� �
þ gxz ðAzDzÞnþ1

j;k � ðAy;zP zÞnþ1
j;k

� �
;

Ey jnþ1
jþ1

2;k
¼ gyy Dy jnþ1

Jþ1
2;k

� ðAzP yÞjnþ1
jþ1

2;k

� �
;

Ezjnþ1
j;kþ1

2
¼ gzx ðAzDxÞnþ1

j;kþ1
2
� ðAyP xÞnþ1

j;kþ1
2

� �
þ gzz Dzjnþ1

j;kþ1
2
� ðAyP zÞnþ1

j;kþ1
2

� �
.

ð38Þ
3.3.2. Discretization of the Bloch equations

At thewavelengths, we consider aKDP crystal is transparent. The relaxation terms in the Bloch equations [16]
may be neglected. Thus, the Bloch splitting is no longer necessary as the Bloch equations might be rewritten as
otqjk ¼ � ı

�h
½H 0 þ V ; q�jk; ð39Þ
where H0 = diag(�hxi)06i6N is the matrix describing the free Hamiltonian operator.
The Bloch equations can be solved using their analytic solution written as Eq. (15), where we replace V by

V + H0. The discretization is performed thanks to Eqs. (16) and (17).
3.3.3. Boundary conditions
In the direction z of propagation of the wave, we wish to consider the boundaries as transparent for the

wave. For this purpose, we shall use the Silver–Müller conditions. Let us recall that these conditions are writ-
ten in the linear isotropic material (see Fig. 1).

If (Di,Hi) is the incident wave-field and n the outer normal vector to the domain, these conditions arewritten as
ðD�DiÞ � n� 1

c
ðH�HiÞ � n� n ¼ 0 ð40Þ
at the entry of the domain (z = 0) and
D� n� 1

c
D� n� n ¼ 0 ð41Þ
at the exit.
In the bidimensional case, this yields
�Dy þ Di
y þ 1

c ðHx � Hi
xÞ ¼ 0;

Dx � Di
x þ 1

c ðHy � Hi
yÞ ¼ 0

(
ð42Þ
and
Dy þ 1
c Hx ¼ 0;

Dx � 1
c Hy ¼ 0.

(
ð43Þ
These equations are written, using the scheme of Fig. 6, for every y, z = 1, z = Nz and for time tn+1. The miss-
ing values of the magnetic field Hnþ3

2 are obtained with the Faraday equations (33). This gives us the electric
induction D at the boundaries, which could not be recovered from Eqs. (34). The magnetic fieldH is interior to
the domain and can be computed completely from Eq. (33).

In the transverse direction y, we use periodic conditions.

Remark 4. These boundary conditions do not require the entire pulse to be in the domain as an initial datum
(as with the PSTD scheme).
3.3.4. Conclusion

In this scheme, we have only used central differencing and averaging. The overall accuracy of the scheme is
second-order:
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Proposition 5. The FDTD scheme with centered nonlinearity is of second order in space and time.

From the dispersion analysis of the FDTD scheme for the Maxwell equations, we can derive the stability
criterion of the linear scheme (i.e., when the polarization term is vanishing) [7]
cdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dz2
þ 1

dy2

s
< 1; ð44Þ
where c is the speed of light in the medium, dy and dz the two space steps.
Obtaining a stability for the whole nonlinear scheme is a complex task and is still an open question beyond

the scope of this article.

4. Experiments

A particular experiment will be of much importance in this section for highlighting numerical problems
as well as for studying the validity of the Maxwell–Bloch model. This experiment is a run of second har-
monic generation. Second harmonic generation is a physical phenomenon, where as the wave-field at the
frequency x propagates in the crystal, the optical quadratic nonlinearity creates a wave-field at the
frequency 2x. Each molecule of the crystal may generate a second harmonic with its own phase. In order
for this second harmonic to grow, these phases must match. In a uniaxial crystal like the KDP, the angle of
incidence can be chosen to make these phases match, this angle is called the phase matching angle. Owing to
the expression of the quadratic susceptibility of a KDP crystal, we know that (see [11, p. 44] for instance), if
the wave is initially polarized in the y-direction, the second and even harmonics will appear in the
x-direction.

The dipolar matrix for a KDP crystal is given in [1]. We believe that the method exposed in [1] could be
extended to treat a large class of crystals. For instance, in [2], we perform several computations with an
AgGaS2 crystal.

4.1. Numerical considerations

To compare the computational cost of the three schemes, we let a wave-field travel through a KDP crystal.
We measure the computations times for the three schemes for various crystalline lengths. In this experi-

ment, we study the propagation of a (5 fs, 200 lm, 109 V/m) Gaussian pulse at normal incidence. We took
dz = 10.6 nm (100 points per wavelength), dy = 5.6 lm (100 points in the transverse direction), dt = 0.013 fs.

We put the incoming wave-field as an initial datum in the linear material (see Fig. 1). Thus the crystal starts
after 4 lm of this medium.

As shown in Fig. 8, the two new schemes presented in this paper are more than two times faster than the
scheme of Section 3.1 [4]. The FDTD scheme [4] is clearly too expensive to be used for a physical experiment.

Remark 6. The scheme [4] is heavily optimized for the testing platform (mainly through [14]). This
optimization is still a work in progress for the two other schemes (for instance we could improve the efficiency
of the FFT algorithm) and we hope to improve the results shown in Fig. 8.
4.1.1. Space and time step sizes

In the linear isotropic case, we know from [3,10] that the space step can be chosen as small as 16 points per
wavelength (FDTD) or 2 points per wavelength (PSTD). For the one-dimensional Maxwell–Bloch equations
in isotropic material, 30 points per wavelength were sufficient [15]. It shall also be noted that this is relative to
the wavelength of the higher harmonic we have to study.

In this section, we show that for the nonlinear anisotropic case, space steps have to be taken much smaller
than expected. In Fig. 9, we have plotted the results of a second harmonic generation experiment after 20 lm
of propagation in a crystal of KDP. The incoming wave-field is a 20-fs Gaussian pulse of 108 V/m initially
polarized in the y-direction. The even harmonics appear in the x-coordinate of the electric field. This coordi-
nate of the field is plotted for several sizes of the space step ranging from 40 to 100 points per wavelength. The
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Ey component does not change with the various step sizes, so we have not plotted it. We have used the pseudo-
spectral scheme for the computations.

From [10], we could expect that a space step of 40 points per wavelength in the fundamental harmonic (that
is to say 20 points per wavelength in the second harmonic) would be sufficient to correctly describe the wave–
matter interaction. As seen in Fig. 9, this is far from being the case.

Grids coarser than 80 points per wavelength are clearly not adapted to study second harmonic generation
and nonlinear effects.

4.1.2. Bloch splitting

We could expect that using a Strang splitting method for solving the Bloch equations or not would make a
difference only for coarser grids. We run a second harmonic generation experiment at the phase matching an-
gle in 10 lm of KDP. The incoming wave is a 20-fs Gaussian pulse of 108 V/m. The results are plotted in
Fig. 10. We have used the one-dimensional PSTD scheme, where the wavelength of the pulse is 1.06 lm.
The time step dt is determined from dz and the stability criterion of Eq. (31) with a CFL condition of 0.75.

Using a splitting method for the Bloch equations, we underestimate the quadratic nonlinearity. As the grid
size decreases, the intensity of Ex increases. On the contrary, if the Bloch equations are solved directly without
a splitting method, we tend to overestimate the quadratic nonlinearity. As the grid size decreases, the intensity
of Ex decreases.

4.2. Physical experiments

In the following experiments, instead of plotting the components of the electric field E of the wave-field as
usual, we use the energy flux in each polarization. The energy flux is defined as
F xðy; zÞ ¼
Z T

0

Exðt; y; zÞHyðt; y; zÞ dt;

F yðy; zÞ ¼
Z T

0

Eyðt; y; zÞHxðt; y; zÞ dt;
where we run the experiment for t 2 [0,T].
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4.2.1. Second harmonic generation with phase matching

We will perform a second harmonic generation experiment at the phase matching angle. We inject a
Gaussian (5 fs, 200 lm wide, 108 V/m) pulse in 10 lm of KDP. The pulse is initially polarized in the
y-direction.

In this run, we used the FDTD scheme of Section 3.3. The grid size is 100 points per wavelength in the
z-direction (dz = 10.6 nm). We took 100 points in the direction y and a CFL condition of 0.8 in Eq. (31).

The results are shown in Figs. 11 and 12, where we have plotted two components of the energy flux in the
crystal. The coordinate Fy contains the fundamental harmonic and odd orders harmonics. The coordinate Fx

contains even harmonics and in particular the second harmonic.



Fig. 11. Energy flux Fy in a SHG experiment at the phase matching angle after a propagation in 10 lm of KDP. We have used arbitrary
units for the intensity.

Fig. 12. Energy flux Fx in a SHG experiment at the phase matching angle after a propagation in 10 lm of KDP. We have used arbitrary
units for the intensity as in Fig. 11.
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In Fig. 11, we observe that the fundamental harmonic does not seem to be much affected by the travel
through the crystal. The energy at the entry (y = 0 lm) and at the exit (y = 10 lm) is quite the same. Indeed,
the crystal length is too short for the SHG process to significantly decrease the intensity of the base
harmonic.

In Fig. 12, we observe the evolution of the Fx component of the energy flux. We see that initially there is no
energy in this polarization. As the pulse propagates, the energy grows. The growth is bigger in the center of the
beam, which is where most intensity of the fundamental harmonic is located. We also observe that the beam is
thinner in this polarization.

We will now study the evolution of the electric field at the center of the beam. In Fig. 13, we have plotted
the evolution of the coordinate Ey of the electric field at seven points in the crystal.

The intensity does not seem much affected by the propagation. The width of the spectrum shall also be
noted as we study the propagation of a short pulse. We have plotted the evolution of the Ex component in
Fig. 14.
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Fig. 13. The Ey component and its Fourier transform in an experiment of second harmonic generation for seven points in the crystal. The
amplitude of the Fourier transform is plotted in arbitrary units, the frequency is relative to the one of the incoming beam.
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Fig. 14. The Ex component and its Fourier transform in an experiment of second harmonic generation for seven points in the crystal. The
frequency units of the Fourier transform is relative to the frequency of the incoming laser pulse. The amplitude of the spectrum is shown in
arbitrary units.
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We can see the growth of the second harmonic in this polarization. There is also optical rectification as
shown in the lower frequencies of the spectrum as expected.

4.2.2. Second harmonic generation without phase matching

In this section, we study the effect of phase mismatch on the second harmonic growth. In this run, we take
an angle of incidence far from the phase matching. We also choose to take a very thin beam in order to have
an important diffraction effect.

The diffraction will bend the wavefront of the propagating wave-field. The phase matching condition will
then be fulfilled in another direction that the direction of propagation z.

In this experiment, the laser beams impinges a KDP crystal of 50 lm at normal incidence. We consider a
3-fs Gaussian pulse, whose intensity is 1010 V/m and width 4 lm.

We use the pseudospectral scheme and take 80 points per wavelength in the direction of propagation and
150 points in the transverse direction, which gives dz = 11.8 nm, dy = 149.3 nm and dt = 0.0014 fs.

The two components of the energy flux after 400 fs are shown in Figs. 15 and 16.
In Fig. 15, we can observe the effect of the diffraction on the laser beam.
In Fig. 16, second harmonic generation is observable. The two second harmonic pulses do not propagate in

the direction of propagation of the fundamental harmonic. After a few microns, the diffraction starts to atten-
uate the intensity of the laser beam.



Fig. 15. Energy flux Fy in a SHG experiment without phase matching after a propagation in 50 lm of KDP (268 fs). We have used the
same arbitrary units for the intensity.

Fig. 16. Energy flux Fx in a SHG experiment without phase matching after a propagation in 50 lm of KDP (268 fs). We have used the
same arbitrary units for the intensity as in Fig. 15.
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4.2.3. Self-focusing effect

For intense laser beams, the optical Kerr effect can produce self-focusing. In this run, we study this effect
with our model.

We shall consider a 7.5-fs Gaussian pulse, whose strength is 1.5 · 1010 V/m and width 12 lm. We have
taken a very intense laser beam to reduce the crystalline depth needed to observe the self-focusing effect.
The wave-field impinges a KDP crystal of 90 lm at normal incidence.

We use the pseudospectral scheme of Section 3.2. For this experiment, we took 100 points per wave-length
in the z-direction (dz = 10.6 nm) and 150 points in the transverse direction y (dy = 149.3 nm). The CFL
parameter is taken to be 0.8 (dt = 0.0014 fs). To avoid the wraparound effect, we have added 5 PML cells
in each transverse boundary and 10 in the normal boundaries.

To speed-up the computations, we have used two CPU as described in Section 3.2.3.
In Fig. 17, we have plotted the energy flux Fy after 400 fs.



Fig. 17. Energy flux after 400 fs of propagation in a KDP crystal. We have used arbitrary units for the intensity of the energy flux.
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The self-focusing effect is easily observable in Fig. 17. The Maxwell–Bloch model renders the cubic nonlin-
earity of the crystal. Yet, we shall note that for such intensity, the crystal would have melt. To study such phe-
nomenon, we should complexify the model to treat the ionization of the material.

However, for practical applications, it is important to have a correct rendering of the cubic nonlinearity in
nonlinear crystals. Indeed, as shown in [20], the cubic nonlinearity may decrease the efficiency of second
harmonic generation.

5. Conclusion

In this paper, we have presented three numerical schemes for the bidimensional Maxwell–Bloch equations.
The first scheme, which is a direct extension of the unidimensional scheme [9] is too computationally expensive
to be really useful for distances longer than a few dozens of microns. The second one uses a pseudospectral
method and yields a very simple scheme, which can be easily parallelized. The last FDTD scheme is quite fast
to solve compared to the first scheme. It is also rather simple to write as the computation of the nonlinearity is
separated from the solving of the Maxwell equations.

For large distances of propagation and short pulses, one should use the PSTD scheme as it is the fastest of
the three exposed in this paper. To study longer pulses, the last FDTD scheme is more efficient as the laser
beam does not have to be entirely contained in the computational domain as with the pseudospectral scheme.

We have also shown the high complexity of the nonlinearity rendered by the Maxwell–Bloch model. As
shown in Section 4.1.1, the grids used have to be much finer than with Schrödinger models for instance. This
could be explained by the interplay between the anisotropy of the material and the optical nonlinearities. The
Maxwell–Bloch model renders many physical effects (high-order dispersive nonlinearities, saturation effect,
Raman scattering as shown in [2]). Their relative contributions are hard to fully understand.

The schemes presented in this paper could easily be extended to treat three-dimensional wave-fields. How-
ever, the amount of computations involved would probably be beyond the reach of common workstations.
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